Rupert Sutherland with DFDP-2 flags |
The first phase of the drilling process was to penetrate down through a thick sequence of gravel and mud left behind in the Whataroa Valley after the retreat of ice at the end of the last ice age. This was surprisingly challenging because of a thick sequence of very sticky mud that was deposited in the valley at a time when it was a deep fiord or lake.
DFDP-2 drill site J.Thomson@GNS Science |
DFDP-2 drill site J.Thomson@GNS Science |
This is a view of the drill site on a nice morning with Phase 2 well established and the drill at a depth of 340 metres. Behind the rig you can see the drilling mud ponds. The science labs are on the right and spare drilling rods that are added as the drill gets deeper are in the foreground.
The labsin the background are where the scientists study the rocks being brought up by the drill, and make geophysical measurements taken by equipment that is lowered down the borehole.
Close up to the rig you can see the vertical drill rod (or pipe) that is rotating and gradually descending down the drill hole. The next rod is lined up ready for connecting when the drill is a few metres deeper. The speed of drilling is roughly 1 to 4 metres an hour at this stage, and a new drill rod is added about every 6 hours.
Next to the drill is this pond of muddy water, which is a vital part of the system used for cutting down into the rock. The mud is specially formulated to have the right viscosity and density and is sucked up by a very powerful pump. After having large particles sieved out of it, it is sent down the centre of the drilling pipe right down to the cutting face of the drill bit.
The drill bit on the right has cut through about a hundred and twenty metres of bedrock, and is about to be replaced by the nice shiny one on the left. The drilling mud is forced out of the holes that you can see, and then flows up the outside of the drill pipe back to the surface, bringing with it the rock chips and also carrying heat away from the cutting face at the same time.
This is the base of the drill rig, with a section of the rotating drill pipe visible. Drilling mud is flowing down the centre of it on its way down to the drill bit. After its return journey on the outside of the drill pipe, loaded with rock fragments, it emerges at ground level and is carried away in the pipe that extends to the right.
The drilling mud flows into a collection pond. The sieve that you see is for collecting samples of the rock fragments for analysis.
The samples are first carefully washed of fine mud or clay.
They are then sorted by hand.
After being glued to a microscope slide, the rock samples are ground down to a thickness of 30 microns. They are then transparent and can be analysed using an optical microscope. The mineral content can then be studied in detail. As the drill gets closer to the fault, the scientists expect to be able to see changes in the types of minerals present. In this way they will be able to judge the right time to change the drilling system to phase 3 and start retrieving intact rock cores.
DFDP-2 drill site J.Thomson@GNS Science |
DFDP-2 drill site J.Thomson@GNS Science |
Exciting stuff to be getting into a plate boundary and good to read this in conjunction with Rupert's blog which you give the link to.
ReplyDeleteIs there a feeling that the heat you are encountering is greater than it would normally be at that depth because of the boundary? Keith
This is a really great post. Thanks a bunch for sharing this with us. You always post such good stuff and totally a fan. Do keep up the good and looking forward.
ReplyDelete